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• Quantum composite systems.

• In this lecture we describe the quantization of classical composite systems.

• We remind, classical composite systems were discussed in the second
lecture.

• Analogously to description of classical composite systems we will assume
only the logical independence.

• Therefore, neither dynamical nor statistical independence will not be
assumed.

• Consequently, we define:

IFTiA Gdańsk University – Poland 1



Quantum correlations V. Gdansk-Houston, March, 2015

• A quantum composite system will be determined by the quadruple

(A ≡ A1 ⊗ A2, S ≡ SA, {Tt}, ϕ0) (1)

where A (so also Ai) stands either for a C∗-algebra or a W ∗-algebra.

• Moreover, if A is a C∗-algebra (W ∗-algebra) then S stands for the set
of all states on the global system A (all density matrices - normal states
on global system respectively).

• {Tt} stands for the set of dynamical maps.

• ϕ0 is a distinguished state (playing the role of distinguished probability
measure).

IFTiA Gdańsk University – Poland 2



Quantum correlations V. Gdansk-Houston, March, 2015

• Frequently, it is convenient to think that the algebra Ai is associated
with some particular region (in R

k), i = 1, 2, cf examples given in the
third lecture.

• Let us consider the form of the second ingredient S of the above
definition (so the set of normalized, positive linear forms on A1 ⊗ A2).

• The first attempt, following the classical case, would be to put S =
S1 ⊗ S2 or S = conv(S1 ⊗ S2).

• Surprisingly these sets do not contain all states.

• Namely, one has (see exercise 11.5.11 Kadison-Ringrose book!)

IFTiA Gdańsk University – Poland 3



Quantum correlations V. Gdansk-Houston, March, 2015

• Example 1. Let A1 = B(H) and A2 = B(K) where H and K are
2-dimensional Hilbert spaces. Consider the vector state ωx(·) = (x, · x)
with x = 1√

2
(e1⊗f1+e2⊗f2) where {e1, e2} and {f1, f2} are orthonormal

bases in H and K respectively. Let ρ be any state in the norm closure of
the convex hull of product states, i.e. ρ ∈ conv(S1 ⊗ S2). Then, one
can show that

‖ωx − ρ‖ ≥ 1

4
. (2)

• Remark 2. One should note that ωx can always be approximated by
a finite linear combination of simple tensors (as it was explained in
the fourth lecture). However, here we wish to approximate ωx by a
convex combination of positive (normalized) functionals and this makes
the difference.

IFTiA Gdańsk University – Poland 4



Quantum correlations V. Gdansk-Houston, March, 2015

• Consequently, contrary to the classical case even in the simplest non-
commutative case, the space of all states of A1 ⊗A2 is not norm closure
of conv(S1 ⊗ S2).

• It means, in mathematical terms, that for non-commutative case the
weak∗ Riemann approximation property of a (classical) measure does
not hold, in general!

• Thus, it is natural to distinguish states having analogous form to that
appearing for classical composite systems.

• Hence we have:
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• Definition 3. – C∗-algebra case.
Let Ai, i = 1, 2 be a C∗-algebra, S the set of all states on A ≡ A1⊗A1,
i.e. the set of all normalized positive forms on A. The subset
conv(S1 ⊗S2) in S will be called the set of separable states and will
be denoted by Ssep. The closure is taken with respect to the norm of
A

∗. The subset S \Ssep ⊂ S is called the subset of entangled states.
– W ∗-algebra case.

Let Mi, i = 1, 2 be a W ∗-algebra, M = M1⊗M2 be the spacial tensor
product of M1 and M2, S the set of all states on M, and S

n the
set of all normal states on M, i.e. the set of all normalized, weakly∗-
continuous positive forms on M (equivalently, the set of all density
matrices). The subset convπ(Sn

1 ⊗ S
n
2 ) in S

n will be called the set
of separable states and will be denoted by S

n
sep. The closure is taken

with respect to the operator space projective norm on M1,∗ ⊙M2,∗.
The subset S

n \ S
n
sep ⊂ S

n is called the subset of normal entangled
states.

IFTiA Gdańsk University – Poland 6



Quantum correlations V. Gdansk-Houston, March, 2015

• Remark 4. 1. As a separable state has the form of an arbitrary classical
state (presented in the second lecture), it is naturally to adopt the
convention that Ssep (Sn

sep) contains only classical correlations.

2. The set of entangled states is the set where the quantum (so extra)
correlations can occur.

3. The difference between C∗-algebra case and W ∗-algebra case stems
from the Grothendieck’s theory of tensor products.

4. In particular, the exposition given in the last lecture shows how
naturally the projective tensor product is appearing in Definition 3.
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5. Furthermore, to appreciate the use of projective topology, we recall
that the set of all normal states on M is weakly-∗ dense in the set of
all states on M; see Bratteli, Robinson book.

6. The principal significance of normality of a state, from physical point
of view, follows from existence of the number operator, see vol II of
Bratteli, Robinson book. In other words, a normal state corresponds
to such situation when the number of particles has well defined sense.

• Having defined separable, and entangled states we turn to the question
why other arguments, leading to the general form of two points correlation
function, are not working in the non-commutative setting.

• Our first observation is the following:
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• Fact 5. 1. classical case.

Let δa be a Dirac’s measure on a product measure space, i.e. δa is
given on Γ1×Γ2. Note that the marginal of the point measure δa gives
another point measure, i.e. δa|Γ1 = δa1. Here we put a ∈ Γ1 × Γ2,
a = (a1, a2). The same in “physical terms” reads: a reduction of a
pure state is again a pure state.
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2. non-commutative case.

Let H and K are finite dimensional Hilbert spaces. Without loss of
generality we can assume that dimH=dimK = n.

Let ωx(·) = (x, · x) be a state on B(H) ⊗ B(K) where x is assumed
to be of the form

x =
1√
n

(

∑

i

ei ⊗ fi

)

(3)

(so ωx(·) is a fully entangled state).

Here {ei} and {fi} are basis in H and K respectively.
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Then, we have

ωx (A ⊗ 1) =
1

n





∑

i

ei ⊗ fi, A ⊗ 1

∑

j

ej ⊗ fj





=
1

n

∑

i,j

(ei, Aej) (fi, fj) = TrH
1

n
1A ≡ TrH̺0A,

(4)

where ̺0 = 1
n
1 is “very non pure” state.

3. In other words, the non-commutative counterpart of the marginal
of a point measure (pure state) does not need to be again a point
measure (pure state).

4. Consequently, the crucial ingredient of the discussion, given in the
second lecture, leading to the general form of two point (classical)
correlation function is not valid in non-commutative case.
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• The next difficulty follows from the geometrical characterization of the
set of states.

• Namely, in geometrical description of a convex set in finite dimensional
spaces one can distinguish two kinds of convex closed sets: simplexes
and non-simplexes. Relevant illustrations were given in he first lectures!.

• Let K be a convex compact set. From Krein-Milman theorem, the set
K has extreme points {ki} and K = conv {ki}.

• Thus K is a convex hull of its extreme points {ki}.

• If any point of K can be given uniquely as convex combination of extreme
points then K is called a simplex.

• For example, a triangle is a simplex, but a circle is not a simplex. This
gives an intuition.
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• However, here, considering infinite dimensional algebras, so genuine
quantum systems!, and being interested in certain subsets of positive
forms on these algebras, the definition of Choquet is more suitable.

• Let K be a base of a convex cone C with apex at the origin. The cone
C gives rise to the order ≤ (a ≤ b if and only if b−a ∈ C). K is said
to be a simplex if C equipped with the order ≤ is a lattice.

• (Lattice is a partially ordered set in which every two elements have a
supremum and an infimum).

• The importance of this notion follows from the well known result saying
that in the classical case, the set of all states forms a simplex while this
is not true for the quantum case. More precisely:
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• Proposition 6. Let A be a C*-algebra. Then the following conditions
are equivalent

1. The state space SA is a simplex.
2. A is abelian algebra.
3. Positive elements A

+ of A form a lattice.

• Therefore in quantum case the set of states is not a simplex (contrary to
the classical case).

• Consequently, in quantum case, all possible decompositions of a given
state should be taken into account.

• This should make clear why decomposition theory is absolutely necessary.
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• We wish to close this section with a basic package of terminology used
in open systems and quantum information theory (so also in an analysis
of quantum composite systems).

• On the one hand, this is a feature of quantum composite systems. On
the other hand, we will need material for an analysis of PPT states.

• A linear map α : B(H) → B(K) is called k-positive if a map idMk
⊗ α :

Mk ⊗B(H) → Mk ⊗B(K) is positive, where Mk ≡ Mk(C) denotes the
algebra of k × k matrices with complex entries.

• A map α is called completely positive if it is k-positive for any k.

• A completely positive map α will be shortly called a CP map.
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• A positive map α : B(H) −→ B(K) is called decomposable if there
are completely positive maps α1, α2 : B(H) −→ B(K) such that α =
α1 + α2 ◦ τH, where τH stands for a transposition map on B(H).

• Let P, Pc and Pd denote the set of all positive, completely positive and
decomposable maps from B(H) to B(K), respectively.

• Note that
Pc ⊂ Pd ⊂ P

• Finally, let us define the family of PPT (transposable) states on B(H)⊗
B(K)

SPPT = {ϕ ∈ S : ϕ ◦ (idB(H) ⊗ τK) ∈ S}. (5)

where, as before, τK stands for the transposition map, now defined on
B(K).
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• τK - the transposition map - is a positive map but not completely
positive.

• Consequently, the condition appearing in the definition of PPT states is
not trivial!.

• Note that due to the positivity of the transposition τK every separable
state ϕ is transposable, so

Ssep ⊂ SPPT ⊂ S.
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